Ultrasonic-Induced Grain Refinement in Laser Cladding Nickel-Based Superalloy Reinforced by WC Particles

نویسندگان

چکیده

Laser cladding was used to prepare three composite coatings, i.e., Inconel 718 nickel-based superalloy (IN718), IN718-50 wt.% WC created by adding tungsten carbide (WC) particles and assisted ultrasonic vibration. The phase composition, microstructure evolution, microhardness, residual stress tribological properties of the coatings were studied. addition enhances hardness improves properties, but also causes aggregation considerable formation carbides associated with rough structure. Ultrasonic vibration greatly refines solidification microstructure, as it can break growing dendrites, reduce reinforced refine solidified average microhardness latter two increased 36.37% 57.15%, respectively, compared first IN718 coating, last coating (ultrasonic assistance) had lowest COF (0.494). refined converted wear mechanism from adhesive abrasive wear. In addition, resultant on surface roughly doubled after 50 WC, only 49.53% treatment. simulation results indicate that acoustic cavitation mainly occurs in middle bottom molten pool proper frequency is conducive generation effect.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Laser Cladding of Ultra-Thin Nickel-Based Superalloy Sheets

Laser cladding is a well-established process to apply coatings on metals. However, on substrates considerably thinner than 1 mm it is only rarely described in the literature. In this work 200 µm thin sheets of nickel-based superalloy 718 are coated with a powder of a cobalt-based alloy, Co-28Cr-9W-1.5Si, by laser cladding. The process window is very narrow, therefore, a precisely controlled Yb ...

متن کامل

On APFIM of Grain Boundaries in a Nickel Base Superalloy

Experimental details of atom probe field ion microscopy (APFIM) of a Ni-16Cr-9Fe alloy are presented. In particular, studies concerning analysis of intergranular carbides and borides and segregation to grain boundaries are described. It was found that NiZ3B6 precipitates are very sensitive to preferential field evaporation, which necessitates optimization of the analysis conditions. In the FIM ...

متن کامل

Analysis of Cracks in the Pulsed Nd:YAG Laser Welded Joint of Nickel-Based Superalloy

The weldability of GTD-111 nickel-based superalloy by pulsed Nd:YAG laser welding with an average power of 250 W was studied, and the microstructural evolution and cracking characteristics were also investigated. The solidification cracking of the fusion zone (FZ) and the intergranular liquation cracking in the heat affected zone (HAZ) were observed in the joint. Solidification cracking was cau...

متن کامل

Research on the Grain Boundary Liquation Mechanism in Heat Affected Zones of Laser Forming Repaired K465 Nickel-Based Superalloy

The damaged K465 nickel-based superalloy parts were repaired by laser forming repair technology. The cracking characteristics and grain boundary liquation in heat affected zones were investigated by optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). It was found that the cracks originated from the heat-affected zone and extended to the repai...

متن کامل

Nickel-based Superalloy Layer Deposited on AISI H13 Hot Tool Steel Base Metal Using Explosion Cladding process

An experimental test was carried out to explosively clad solution annealed Inconel 718 superalloy on quench-tempered AISI H13 hot tool steel. A wavy with vortices interface geometry was obtained from this experiment. A gradual change in the wavelength along the direction of welding was observed which was due to a change in the impact angle, following the plate contacts. In this paper, the exper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Coatings

سال: 2023

ISSN: ['2079-6412']

DOI: https://doi.org/10.3390/coatings13010151